

Commercial biobased wood coatings – the current market position

Ewelina Depczyńska

08.04.2015

Biobased – what does it mean?

"amount of bio-based carbon in the material or product as a percent of the weight (mass) of the total organic carbon in the product"*

*The United States Department of Agriculture (USDA)

Wood coatings – non-film forming

- 1) Wood preservatives priming oils and stains
- registration in each EU country (BPR), where will be sold
- protection of wood against rot/blue stain (wood preservation)
- main components: biocides, solvent, binder
- 2) Wood oils
- non-film-forming products for garden furniture and terraces
- main components: binder, solvent, biocides
- 3) Non-film-forming wood stains
- form a film of about 5-20 microns, solid content max. 25 30% vol.
- garden furniture, log houses, fences and structures
- main components: binder, solvent, biocides, pigments, additives

Wood coatings - Film forming

- 4) Film-forming wood stains
- form a film of higher then 20 microns, solid content min.25-30% vol.
- fences, wooden claddings, window and door joinery,
- Main components: binder, solvent, biocides, pigments, additives
- 5) Lacquers
- film-forming product on wood surface
- main components: binder, solvent, biocides, pigments, additives
- 6) Opaque products primers, enamels, putty
- window and door joinery, furniture, floors
- main components: binder, solvent, biocides, pigments, fillers, additives
- 7) Others adhesives

Main binders in wood coatings:

- Oxopolymerized oils
- Polyesters:
 - alkyd resin
 - high-solid alkyd resin
 - water-soluble alkyd resin
 - modify alkyds (acrylic, urethane, silane, styrene)
- Polyurethanes:
 - > SB polyurethanes
 - water-soluble polyurethanes
- Polyamides, Vinyl polymers, Epoxy resins, Polyesteramides, Polynaphtols

Polyesters

References 1 - 17

Alkyds – old binder with brilliant future

- 1920s first synthesis of alkyd resin from glycerol and phthalic anhydride. Classification in three groups: short, medium long oil resin
- 1933s commercial production of alkyd binder
- 1950s starting point for development of environment friendly alkyds
- 1970s water soluble alkyd resins
- 1980s 1990s WB alkyd emulsion

Alkyd Resin

Where R and R' are different combinations of these acids depending on oil choice

Stearic Acid CH₃(CH₂)₁₆COOH

Palmitic Acid CH₃(CH₂)₁₄COOH

Oleic Acid CH₃(CH₂)₇CH=CH(CH₂)₇COOH (9c)

Linoleic Acid CH₃(CH₂)₄CH=CHCH₂CH=CH(CH₂)₇COOH (9c 12c)

Linolenic Acid CH₃CH₂CH=CHCH₂CH=CHCH₂CH=CH(CH₂)₇COOH (9c 12c 15c)

Figure 1: General structure of alkyd resin.

Alkyds – synthesis and bio-recourses

Figure 2: Synthesis of alkyd resin.

Alkyds – synthesis and bio-recourses

Figure 3: Biobased raw materials in alkyd's synthesis.

Alkyds – based on biobased oils

	Oil								
	Raw Linseed Oil	Raw Castor Oil	Dehydrated Castor Oil	Tung Oil	Soya Bean Oil	Safflower Oil	Crude Tall Oil	Fish Oil	
Property									
Acid No.	2-4	5-12	3-6	a	0.5-6.0	1-4	165-170	0.5-8.0	
Sap. No.	188-196	172-182	188-194	190-195	189-195	188-194	170-180	185-195	
Specific Gravity	0.931-0.934	0.963	0.938-0.941	0.940-0.942	0.924	0.924	0.960-0.984	0.923-0.933	
Wt/gal	7.76	8.08	7.81	7.85	7.70	7.70	8.11	7.73-7.78	
Iodine no.	170-190	85	125-140	160-165	130-140	142	143-170	165-195	
Color	11-12	8-9	4-6	9-12	9.5-10.5	10-10.5	10-dark	12-14	
Viscosity	A	U	G-H	H-J	A	A	S-V	A	
Saturated Acids (%)	5.0	2.0	2.0	5.5	13.2	6.6	7	20	
Oleic Acid (%)	5	8.6	8.6	15	30.2	16.4	16-25	10	
9-12 Linoleic Acid (%)	40	3.5	57		51.2	76.7	16-25	15	
9-11 Linoleic Acid (%)	1529	2	25.5	54	<u>~</u>	್ತ	:2	29	
Linolenic Acid (%)	50	3	200000000 E3	32	5.4	0.3	35	23	
Ricinoleic Acid (%)	153	85.9	6.9	3	85	85	ia .	78	
Eleostearic Acid (%)	14	-	-	79.5	74		186	-	
Refractive Index	1.4775	2	1.4873	1.5160-1.5200	1.4734-1.4740	<u></u>	19	29	

Drying Index = %Linoleic acid + 2 *%Linolenic acid

Figure 4: Properties of common oils used in alkyd preparation.

Bio - Alkyds and their properties

- Soybean, sunflower and linseed oil in alkyd synthesis:
 - first, traditional oils used in alkyd synthesis
 - > excellent autooxidative, chemical and mechanical properties
 - problem with yellowing and loss of gloss during the time
- Nahar seed oil in synthesis of polyester resin:
 - plant in India with high oil contents seeds (~75%)
 - ➤ three different types of resins were prepared with yield (80 90%)
 - > parameters (like hardness) increase with increase of phthalic anhydride
- Yellow oleander seed oil based alkyds:
 - ever-green tree in North-East India
 - > non-drying index (lower then 70%) oil has to be mixed with epoxy resin
 - alkyd resin with satisfying mechanical properties (gloss, hardness, adhesion), chemical resistance and thermal stability

Bio - Alkyds and their properties

- Alkyd resins based on Ricinodendron heudelotii oil:
 - fast growing tree in tropical forest in Africa
 - three different resins were prepared with different molar ratio anhydrides
 - good drying time, adhesion, gloss and contact angle
 - > satisfying mechanical, properties, chemical resistance and thermal stability
- Palm oil in synthesis of alkyd resin:
 - > three different resins were prepared with different molar ratio anhydrides
 - depending of molar ratio with phthalic anhydride: high gloss, good hardness
 - resistance to water, alkali and acid
- Polyester resin based on castor oil:
 - advantages: low cost, biodegradability and unique molecular structure
 - better physical, mechanical and thermal properties then petroleum-based polymer
- Others oils used in alkyd production with good results: coconut oil, tobacco seed oil, karawila seed oil and ricinodendron heudelotii oil

Polyurethanes

References 18 - 27

Polyurethanes

- High quality binder very popular in wood coatings
- The main feature of polyurethanes:
 - availability
 - good mechanical properties: abrasion resistance, high elasticity (in different range of hardness)
 - great chemical and thermal properties
 - > possible modification in properties and structure
 - low and stable cost
 - SB binders (right now mostly HS) and Water soluble PU
 - > From petroleum sources linear structure
 - From biobased material hyperbranched structure (more durable)

Polyurethane formation

Fig. 4. Alam et al (2014): Arabian J. Chem 7: 469-479

Polyurethanes – bio-resourses

From seeds like:

- cashew nut
- natural rubber
- Pongamia glabra
- karanja
- rapeseed
- Annona squamosa
- Moringa oleifera
- Nahar (Mesua ferrea L.)
- Jatropha
- canola

Traditional oils:

- linseed
- soybean
- coconut
- castor
- sunflower
- palm
- tung
- cardanol
- cotton
- fish
- camelina

Bio-polyurethanes - properties

- PU based on jatropha oil:
 - good properties: pendulum hardness, water repellence and thermal stability
 - possible application: wood and decorative coatings
- HBPU from sunflower oil:
 - better then linear counterpart
 - very good mechanical, chemical and thermal properties
 - biodegradation properties
- Linseed oil based PUD (UV/air dual-cured system):
 - > several benefits: higher- molecular- weight but with lower viscosity, lower toxicity/odour, easy to clean up and conventional application method
 - depending on curing system different properties e.g. higher hardness and gloss, lower yellowing than in air/UV dual-cured system

Bio-polyurethanes - properties

- High- solid PU from canola, camelina and sunflower oils:
 - good mechanical and thermo-mechanical properties
 - biobased content higher then 60% good mechanical and thermal properties
 - conclusion: the highest linolenic acide content the most similar to petroleum PU, good abrasion resistance, hardness and high contact angle with water
- Waterborn PU based on rapeseed fatty acid methyl esters:
 - great opportunity to be use commercial
 - possibility to modify lower level of unsaturation less yellowing
 - good chemical resistance and hydrophobicity
- Cardanol PUD:
 - low particle size, good viscosity
 - Improvement in hardness, water and solvent resistance, corrosion resistance
- BIO- PU based on soybean oil:
 - good mechanical properties
 - cheaper and more available then from petro-sources

Solvents

References 28 - 30

Solvents

Water – the most important, ecofriendly solvent. WB products started to be very important, because of e.g. VOC regulations, healthy issue;

Two main direction in bio-solvents:

Solvents - sources

- n-butanol, acetone and ethanol can be achieved in ABE fermentation from maize and wheat (mostly in the past), lignocellulosic biomass and syngas
- propylene glycol is produces from glycerol deriving from biodiesel production
- propanediol, receive via fermentation of corn glucose, can be a replacement for propylene glycol or butylene glycol
- ethyl lactate environment friendly solvent, which can replace conventional solvents, is produce from agricultural material
- methyl soyate is produced from soybean oil. It has very good compatibility with many resins. Mostly use as a cleaning agent
- **D-lemonene**, receive from orange or lemon, can replace mineral spirit, methyl ethyl ketone, acetone, toluene, glycol ethers and halogenated solvent
- White spirit, the most popular solvent in paint industry, can be replace via methyl levulinate (from glucose)

Bio-solvents

Attribute	Chlorinated	Hydro-carbon	Methyl Ethyl Ketone	Ethyl Lactate	D-Limonene	Methyl Soyate
Good solvency	Υ	N	Y	Y	Y	Y
Low VOC	Y	N	N	Y	Y	Y
Non HAP	N	N	Υ	Υ	Y	Y
Nonflammable	Υ	N	N	N	N	Y
Low toxicity	N	N	Y	Υ	Y	Y
Fast evaporation	Y	Y	Y	Y	Y	N
No surface residue	Y	Y	Y	Y	Y	N
Biodegradable	N	N	N	Υ	Υ	Y
Low odor	N	N	N	Υ	N	Y
Material compatibility	Y	Y	N	Y	Y	Y
Competitive cost	Υ	Y	Y	Y	N	Y

Biocides

References 31 - 33

Biocides

Bio-oils an their lignin fraction:

- from pine and oak (wood and bark) were pyrolyzed
- more effective against the brown-rot fungus then the white-rot
- better weathering resistance and water repellency
- potencial candidates to exchange traditional biocides

Natural oil
(linseed and tung oil) modified with with organosilanes:

- chemical reaction between cellulose and silane
- very low toxicity, high hydrophobicity
- diminishe water uptake, good weathering resistance
- · does not form a coating
- good alternative for traditional biocides

Additives

References 34 - 35

Additives

Biosilica can be synthesized from cogon grass or rise

- very important as a matting agent in wood coatings
- from cogon grass (cellulose) we can get high purity amorphous silica
- very smooth surface
- very low concentration 2,9%

Cellulose nanofibres as fillers:

- improved mechanical properties of wood coatings
- higher hardness, but no improvement in abrasion resistance
- matting effect because of surface roughness

Organosolv lignin (from maize stalks and spruce wood):

• Many potancial application in paint as e.g.: dispersing, hydrophobic, plasticization, antybacterial agents and flame retandant

Adhesives

References 36 - 38

Wood adhesives

- Soya protein and wheat gluten:
 - inexpensive industrial product
 - combination of properties of both adhesive
- Phenolic resol resin from cornstalk-derived bio-oil:
 - lower price and "green" recourse
 - very easy controlled viscosity
 - very similar to standard phenolic resin
- PU adhesive from canola oil:
 - environmental friendly product
 - great adhesion, strength and flexibility
 - > better performance then conventional adhesive
- Tung oil improved water resistance and adhesion of adhesive

- [1] Güner, F. S.; Yagci, Y.; Erciyes, A. T. (2006). Polymers from triglyceride oils. Prog. Polym. Sci. 31 (2006) 633 670.
- [2] Athawale, V. D.; Nimbalkar, R.V.; (2010). J Am Oil Chem Soc (2011) 88:159 185.
- [3] Hofland, A. (2012). Alkyd resins: From down and out to alive and kicking. Progress in Organic Coatings 73, 274-282
- [4] Dziczkowski, J. (2008). Advances in acrylic alkyd hybrid hybrid synthesis and characterization. The Graduate Faculty of The University of Akron.
- [5] Bora, M. M.; Gogoi P.; Deka, D. Ch.; Kakati, D. K.; (2013). Synthesis and Characterization of yellow oleander (thevetia peruviana) seed oil based alkyd resin. *Industrial Crops and Products* 52 (2014) 721 728.
- [6] Liu ,Ch.; Li, J.; Lei, W.; Zhou, Y.; (2013). Development of biobased unsaturated polyester resin containing highly functionalized castor oil. *Industrial Crops and Products* 52 (2014) 329 337.
- [7] Dutta, N., Karak, N., S.K. Dolui, S.K. (2004). Synthesis and characterization of polyester resins based on Nahar seed oil. *Progress in Organic Coatings 49,* 146–152.
- [8] Assanvoa, E.F., Gogoib, P., Doluib, S.K., D. Baruah, S.D. (2015). Synthesis, characterization, and performance characteristics of alkydresins based on Ricinodendron heudelotii oil and their blending with epoxy resins. *Industrial Crops and Products*, *65*, 293-302.
- [9] San Segundo, I.M. (2014). Synthesis of Novel Alkyd Binders for Protective Wood Coatings from Bio-based Raw Materials. *Ph.D. thesis. Danish Technical University, Denmark.*
- [10] Islam, M. R.; Beg, M. D. H.; Jamari S. S.; Alkyd based resin from non-drying oil. Procedia Engineering 90 (2014) 78 88.
- [11] Kienle, R. H.; Ferguson, C. S. (1929). Alkyd Resins as Film-Forming Materials. Industrial & engineering chemistry 21 (1929), S. 349-352
- [12] T.C. Patton, T.C. (1962). Alkyd Resin Technology, Inter Science Publishers, Inc. John Wiley and Sons, Inc., New York.
- [13] Solomon, D.H., Swift, J.D. (1966), Journal of the Oil and Color Chemist's Association 49, 915–927.
- [14] Aydin, S., Akcay, H., Ozkan, E., Guner, F.S., A.T. Erciyes, A.T. (2004), Progress in Organic Coatings, 51, 273–279.
- [15] Wholf, R.H. (1968). Coconut oil modified alkyd resins and copolymers thereof with an alkyl acrylate, US Patent 3,374,194.
- [16] Ogunniyi, D.S., T.E. Odetoye, T.E. (2008). Bioresource Technology 99, 1300-1304.
- [17] Prashantha, M.A.B. (2007). Synthesis and Characterization of Novel Alkyd Resin Based on Karawila Seed Oil, Ph.D. thesis, University of Moratuwa, Sri Lanka.
- [18] Thebault, M.; Pizzi, A. (2014). Isocyanate free condensed tannin based polyurethanes. *European Polymer Jurnal*.
- [19] Dai, J.; Ma, S.; Liu, X. (2014). Synthesis of bi-based unsaturated polyester resins and their application in waterborne UV-curable coatings. *Progress in Organic Coatings* 78 (2015) 49 54.
- [20] Saalah, S.; Abdullah. L.Ch.; Aung, M. M.; (2014). Waterborne polyurethane dispersions synthesized from jatropha oil. *Industrial Crops and products 64* (2015) 194 200.
- [21] Das, B.; Konwar, U.; Mandal, M.; Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material. *Industrial Crops and Products* 44 (2013) 396 404.
- [22] Chang, Ch.; Lu, K.; (2013). Linseed oil based waterborne UV/air dual cured wood coatings. Progress in Organic Coatins 76 (2013) 1024 1031

References

- 23] Kong, X.; Liu,G.; Qi, H.; (2013) Preparation and characterization of high solid polyurethane coating system based on vagetable oil derived polyols. *Progress in Organic Coatings* 76 (2013) 1151 1160.
- [24] Philipp, C.; Eschig, S. (2011). Waterborne polyurethane wood coatings based on rapeseed fatty acid methyl esters. *Progress in Organic Coatings* 74 (2012) 705 711.
- [25] Deka, H.; karak. N.; (2009) Bio based hyperbranched polyurethanes for surface coating applications. *Progress in Organic Coatings 66 (2009) 192 198.*
- [26] Patel, C.J., Mannari, V. (2014). Air-drying bio-based polyurethane dispersion from cardanol: Synthesis and characterization of coatings. Progress in Organic Coatings, 77, 997-1006
- [27] Lee, A., Deng, Y. (2015). Green polyurethane from lignin and soybean oil through non-isocyanate reactions European Polymer Journal, 63, 67-73
- [28] Datta, J.; Głowińska, E. (2014) Effect of hydroxylated soybean oil and bio-based propanediol on the structure and thermal properties of synthesized bio-polyurethanes. *Industrial Crops and Products 61 (2014) 84 91.*
- [29] Jiang, Y.; Liu, J.; Current status and prospects of industrial bio- production of n- butanol. Biotechnology Advances (2014)
- [30] The Evolution of Bio Based Green Solvents. www. metalfinishing.com; (2011)
- [31] Hochmańska P., Mazela B., Krystofiak T. (2014): Hydrophobicity and weathering resistance of wood treated with silane-modified protective systems. *Drewno57(191):99-110.*
- [32] Singh T., Singh A. P. (2012): A review on natural products as wood protectant. Wood Sci. Technol. 46(5): 851-870.
- [33] Mohan, D.; Shi, J.;(2007) Fungicidal values and their lignin-rich fractions obtained from wood/ bark fast pyrolysis. Chemoshere 71 (2008) 456 465
- [34] Kow, K.-W., Yusoff, R., Abdul Aziz, A.R., Abdullah, E.C.(2014). Characterisation of bio-silica synthesised from cogon grass (Imperata cylindrica). *Powder Technology*, 254, 206-213
- [35] Veigel, S., Grüll, G., Pinkl, S., Obersriebnig, M., Müller, U., Gindl-Altmutter, W. (2014) Improving the mechanical resistance of waterborne wood coatings by adding cellulose nanofibers. *Reactive & Functional Polymers 85, 214-220.*
- [36] Aunga, M.M., Yaakob, Z, Kamarudin, S., Abdullah, L.C. (2014). Synthesis and characterization of Jatropha *curcas* L.)oil-based polyurethane wood adhesive. *Industrial Crops and Products* 60, 177-185
- [37] Kong, X., Liu, G., Curtis, J.M. (2011). Characterization of canola oil based polyurethane wood adhesives. International *Journal of Adhesion&Adhesives31,559-564.*
- [38] Wang, M.; Leitch, M. (2009) Synthesis of phenolic resol resins using cornstalk-derived bio-oil produced by direct liquefaction in hot compressed phenol- water. Journal of Industrial and Engineering Chemistry 15 (2009) 870 875.

Contact details:

SP Technical Research Institute of Sweden, SP Sustainable Built Environment, Drottning Kristinas väg 67, 114 28 Stockholm, Sweden dennis.jones@sp.se

²Tikkurila Polska S.A., Mościckiego 23, 39-200 Dębica, Poland Ewelina.Depczynska@tikkurila.com

³Poznan University of Life Sciences, Institute of Wood Chemical Technology, Wojska Polskiego 28, 60-637 Poznan, Poland bartsimp@up.poznan.pl

⁴SP Technical Research Institute of Sweden, SP Sustainable Built Environment Laboratorgränd 2, SE-931 77 Skellefteå, Sweden bror.sundqvist@sp.se

TIKKURILA INSPIRES YOU TO COLOR YOUR LIFE.TM